X-Ray Diffraction Table |
See Help on X-Ray Diffraction.
Powder X-ray Diffraction (XRD) is one of the primary techniques used by mineralogists and solid state chemists to examine the physico-chemical make-up of unknown materials. This data is represented in a collection of single-phase X-ray powder diffraction patterns for the three most intense D values in the form of tables of interplanar spacings (D), relative intensities (I/Io), mineral name and chemical formulae
The XRD technique takes a sample of the material and places a powdered sample in a holder, then the sample is illuminated with x-rays of a fixed wave-length and the intensity of the reflected radiation is recorded using a goniometer. This data is then analyzed for the reflection angle to calculate the inter-atomic spacing (D value in Angstrom units - 10-8 cm). The intensity(I) is measured to discriminate (using I ratios) the various D spacings and the results are compared to this table to identify possible matches. Note: 2 theta (Θ) angle calculated from the Bragg Equation, 2 Θ = 2(arcsin(n λ/(2d)) where n=1
For more information about this technique, see X-Ray Analysis of a Solid or take an internet course at Birkbeck College On-line Courses. Many thanks to Frederic Biret for these data.
[ 1 ]
D1 Å (2θ) |
I1 %) |
D2 Å (2θ) |
I2 (%) |
D3 Å (2θ) |
I3 (%) |
Mineral | Formula |
10.780(8.20) | 200 | 9.880(8.94) | 180 | 6.700(13.20) | 160 | Chalcomenite | CuSeO3·2(H2O) |
10.780(8.20) | 200 | 4.620(19.20) | 140 | 4.100(21.66) | 100 | Pinnoite | MgB2O4·3(H2O) |
10.800(8.18) | 200 | 4.320(20.54) | 100 | 9.520(9.28) | 80 | Vyalsovite | FeS·Ca(OH)2·Al(OH)3 |
10.800(8.18) | 200 | 3.820(23.27) | 180 | 6.240(14.18) | 100 | Sulvanite | Cu3VS4 |
10.800(8.18) | 200 | 6.380(13.87) | 180 | 5.460(16.22) | 160 | Realgar | AsS |
10.820(8.16) | 200 | 4.640(19.11) | 100 | 3.720(23.90) | 80 | Tochilinite | 6Fe0.9S·5(Mg,Fe++)(OH)2 |
10.860(8.13) | 200 | 6.600(13.40) | 160 | 11.060(7.99) | 100 | Ammonioleucite | (NH4,K)AlSi2O6 |
10.880(8.12) | 200 | 4.540(19.54) | 160 | 5.480(16.16) | 120 | Paratacamite | (Cu,Zn)2(OH)3Cl |
10.880(8.12) | 200 | 8.040(11.00) | 28 | 5.274(16.80) | 20 | Eriochalcite | CuCl2·2(H2O) |
10.926(8.09) | 200 | 5.510(16.07) | 138 | 4.514(19.65) | 78 | Gillardite | Cu3NiCl2(OH)6 |
10.940(8.08) | 200 | 5.484(16.15) | 140 | 5.534(16.00) | 120 | Clinoatacamite | Cu2(OH)3Cl |
10.940(8.08) | 200 | 3.450(25.80) | 170 | 3.550(25.06) | 156 | Rosenbergite | AlF3·3(H2O) |
10.960(8.06) | 200 | 17.040(5.18) | 140 | 7.680(11.51) | 120 | Coskrenite-(Ce) | (Ce,Nd,La)2(SO4)2(C2O4)·8(H2O) |
10.980(8.05) | 200 | 6.420(13.78) | 150 | 6.520(13.57) | 120 | Mirabilite | Na2SO4·10(H2O) |
10.992(8.04) | 200 | 22.040(4.01) | 180 | 8.158(10.84) | 100 | Niedermayrite | Cu4Cd(SO4)2(OH)6·4(H2O) |
11.000(8.03) | 200 | 12.180(7.25) | 180 | 10.400(8.50) | 140 | Refikite | C19H31COOH |
11.000(8.03) | 200 | 17.520(5.04) | 200 | 14.620(6.04) | 180 | Swartzite | CaMg(UO2)(CO3)3·12(H2O) |
11.004(8.03) | 200 | 16.398(5.38) | 200 | 5.766(15.35) | 160 | Bobkingite | Cu5Cl2(OH)8(H2O)2 |
11.040(8.00) | 200 | 5.668(15.62) | 15.840(5.57) | Caoxite | Ca(C2O4)·3(H2O) | ||
11.042(8.00) | 200 | 3.682(24.15) | 180 | 4.778(18.55) | 180 | Tarkianite | (Cu,Fe)(Re,Mo)4S8 |
11.060(7.99) | 200 | 5.524(16.03) | 140 | 8.456(10.45) | 120 | Rokuhnite | Fe++Cl2·(H2O) |
11.080(7.97) | 200 | 20.760(4.25) | 67 | 13.180(6.70) | 66 | Hartite | C20H34 |
11.080(7.97) | 200 | 5.540(15.98) | 180 | 9.060(9.75) | 180 | Andalusite | Al2SiO5 = Al[6]Al[5]OSiO4 |
11.100(7.96) | 200 | 15.480(5.70) | 180 | 13.760(6.42) | 160 | Roubaultite | Cu2(UO2)3(CO3)2O2(OH)2·4(H2O) |
11.106(7.95) | 200 | 5.516(16.05) | 104 | 5.570(15.90) | 104 | Belloite | Cu(OH)Cl |
11.180(7.90) | 200 | 5.848(15.14) | 80 | 10.980(8.05) | 80 | Nickelbischofite | NiCl2·6(H2O) |
11.180(7.90) | 200 | 5.080(17.44) | 160 | 6.160(14.37) | 160 | Bandylite | CuB(OH)4Cl |
11.180(7.90) | 200 | 6.840(12.93) | 144 | 7.124(12.41) | 132 | IMA2009-040 | (NH4)2Mg5Fe3+3Al(SO4)12·18H2O |
[ 1 ]