Mineralogy Database

X-Ray Diffraction Table

Search Webmineral :
  

Minerals Arranged by X-Ray Powder Diffraction

See Help on X-Ray Diffraction.

Powder X-ray Diffraction (XRD) is one of the primary techniques used by mineralogists and solid state chemists to examine the physico-chemical make-up of unknown materials. This data is represented in a collection of single-phase X-ray powder diffraction patterns for the three most intense D values in the form of tables of interplanar spacings (D), relative intensities (I/Io), mineral name and chemical formulae

The XRD technique takes a sample of the material and places a powdered sample in a holder, then the sample is illuminated with x-rays of a fixed wave-length and the intensity of the reflected radiation is recorded using a goniometer. This data is then analyzed for the reflection angle to calculate the inter-atomic spacing (D value in Angstrom units - 10-8 cm). The intensity(I) is measured to discriminate (using I ratios) the various D spacings and the results are compared to this table to identify possible matches. Note: 2 theta (Θ) angle calculated from the Bragg Equation, 2 Θ = 2(arcsin(n λ/(2d)) where n=1

For more information about this technique, see X-Ray Analysis of a Solid or take an internet course at Birkbeck College On-line Courses.  Many thanks to Frederic Biret for these data.

Optional Search Query - To Reset, Click Here
Selected X-Ray λ
Change X-Ray λ
D1 Å
D2 Å
D3 Å
Tolerance %
Elements

[ 1 ]

Found 27 Records, Sorted by D1 using 1.54056 - CuKa1 for 2θ WHERE (d1 > 12.054 AND d1 < 12.546)
D1
Å (2θ)
I1
%)
D2
Å (2θ)
I2
(%)
D3
Å (2θ)
I3
(%)
Mineral Formula
12.060(7.32) 200 6.660(13.28) 160 13.420(6.58) 160 Nielsbohrite K(UO2)3(AsO4)(OH)4·H2O
12.092(7.30) 200 6.648(13.31) 118 13.830(6.39) 52 Vajdakite [(MoO2)2(H2O)2As2O5]·(H2O)
12.120(7.29) 200 5.960(14.85) 180 7.940(11.13) 160 Natrosilite Na2Si2O5
12.136(7.28) 200 6.530(13.55) 180 6.046(14.64) 100 Gainesite Na2Zr2Be(PO4)4·1-2(H2O)
12.154(7.27) 200 11.236(7.86) 180 19.070(4.63) 160 Nevadaite (Cu++,[ ],Al,V+++)6[Al8(PO4)8F8] (H2O)23
12.168(7.26) 200 7.716(11.46) 180 6.942(12.74) 160 Frolovite CaB2(OH)8
12.202(7.24) 200 11.242(7.86) 182 19.030(4.64) 134 Cloncurryite [Cu0.56(VO)0.44]Al2(PO4)2(F,OH)·2.5H2O)
12.220(7.23) 200 9.000(9.82) 180 6.358(13.92) 140 Moydite-(Y) YB(OH)4(CO3)
12.220(7.23) 200 6.328(13.98) 130 4.692(18.90) 106 Boehmite AlO(OH)
12.280(7.19) 200 8.762(10.09) 160 7.032(12.58) 120 Kamphaugite-(Y) (Ca1.84REEx)(Y1.46REE0.54-x)(CO3)4(OH)1.65·2(H2O)
12.300(7.18) 200 4.554(19.48) 90 3.660(24.30) 50 Molybdenite MoS2
12.316(7.17) 200 6.152(14.39) 120 20.360(4.34) 80 Mantienneite KMg2Al2Ti(PO4)4(OH)3·15(H2O)
12.322(7.17) 200 6.572(13.46) 100 6.078(14.56) 60 Selwynite NaK(Be,Al)Zr2(PO4)4·2(H2O)
12.340(7.16) 200 14.900(5.93) 200 7.740(11.42) 180 Callaghanite Cu2Mg2(CO3)(OH)6·2(H2O)
12.360(7.15) 200 5.550(15.96) 130 8.840(1-) 60 Weddellite Ca(C2O4)·2(H2O)
12.360(7.15) 200 4.554(19.48) 70 5.462(16.21) 50 Tungstenite WS2
12.380(7.13) 200 5.380(16.46) 140 9.120(9.69) 120 Vyacheslavite U++++(PO4)(OH)·2.5(H2O)
12.400(7.12) 200 20.600(4.29) 180 14.920(5.92) 160 Paulkerrite K(Mg,Mn)2(Fe+++,Al)2Ti(PO4)4(OH)3·15(H2O)
12.400(7.12) 200 4.404(20.15) 160 5.314(16.67) 150 Szaibelyite MgBO2(OH)
12.414(7.11) 200 7.788(11.35) 190 6.188(14.30) 130 Howlite Ca2B5SiO9(OH)5
12.416(7.11) 200 4.826(18.37) 180 5.980(14.80) 180 Grandviewite Cu3Al9(SO4)2(OH)29
12.430(7.11) 200 14.440(6.12) 200 6.208(14.26) 140 Kaliborite KHMg2B12O16(OH)10·4(H2O)
12.460(7.09) 200 6.280(14.09) 160 7.920(11.16) 140 Curite Pb3+x(H2O)2[(UO2)4+x(OH)3-x]2, x~0.5
12.460(7.09) 200 6.300(14.05) 180 20.800(4.24) 180 Matveevite KTiMn2Fe+++2(PO4)4(OH)3·15(H2O)
12.482(7.08) 200 14.172(6.23) 100 7.060(12.53) 80 Decrespignyite-(Y) (Y,REE)4Cu(CO3)4Cl(OH)5·2(H2O)
12.500(7.07) 200 13.000(6.79) 140 6.460(13.70) 120 Alumohydrocalcite CaAl2(CO3)2(OH)4·3(H2O)
12.520(7.05) 200 6.580(13.45) 180 4.940(17.94) 160 Lepidocrocite FeO(OH)

[ 1 ]