X-Ray Diffraction Table |
See Help on X-Ray Diffraction.
Powder X-ray Diffraction (XRD) is one of the primary techniques used by mineralogists and solid state chemists to examine the physico-chemical make-up of unknown materials. This data is represented in a collection of single-phase X-ray powder diffraction patterns for the three most intense D values in the form of tables of interplanar spacings (D), relative intensities (I/Io), mineral name and chemical formulae
The XRD technique takes a sample of the material and places a powdered sample in a holder, then the sample is illuminated with x-rays of a fixed wave-length and the intensity of the reflected radiation is recorded using a goniometer. This data is then analyzed for the reflection angle to calculate the inter-atomic spacing (D value in Angstrom units - 10-8 cm). The intensity(I) is measured to discriminate (using I ratios) the various D spacings and the results are compared to this table to identify possible matches. Note: 2 theta (Θ) angle calculated from the Bragg Equation, 2 Θ = 2(arcsin(n λ/(2d)) where n=1
For more information about this technique, see X-Ray Analysis of a Solid or take an internet course at Birkbeck College On-line Courses. Many thanks to Frederic Biret for these data.
[ 1 ]
D1 Å (2θ) |
I1 %) |
D2 Å (2θ) |
I2 (%) |
D3 Å (2θ) |
I3 (%) |
Mineral | Formula |
3.344(26.63) | 200 | 3.800(23.39) | 200 | 4.880(18.16) | 200 | Malyshevite | PdCuBiS3 |
3.348(26.60) | 200 | 4.720(18.78) | 180 | 5.700(15.53) | 180 | Polydymite | NiNi2S4 |
3.354(26.55) | 200 | 5.128(17.28) | 186 | 6.280(14.09) | 182 | IMA2009-029 | Ca3Zr2(Fe+++2Si)O12 |
3.360(26.51) | 200 | 5.180(17.10) | 200 | 5.540(15.98) | 160 | Cobaltite | CoAsS |
3.360(26.51) | 200 | 5.580(15.87) | 192 | 3.940(22.55) | 104 | Bravoite | (Fe,Ni,Co)S2 |
3.360(26.51) | 200 | 3.660(24.30) | 120 | 5.740(15.42) | 100 | Fletcherite | Cu(Ni,Co)2S4 |
3.366(26.46) | 200 | 5.160(17.17) | 200 | 5.640(15.70) | 180 | Yafsoanite | Ca3Te2Zn3O12 |
3.372(26.41) | 200 | 4.962(17.86) | 160 | 4.366(20.32) | 140 | Pseudorutile | Fe+++2Ti3O9 |
3.376(26.38) | 200 | 3.022(29.53) | 120 | 5.346(16.57) | 120 | Schallerite | Mn++16[As+++O2OH][Si12O30](OH)14 |
3.380(26.35) | 200 | 6.420(13.78) | 160 | 4.960(17.87) | 120 | Belyankinite | Ca1-2(Ti,Zr,Nb)5O12·9(H2O) (?) |
3.380(26.35) | 200 | 3.400(26.19) | 200 | 2.870(31.14) | 180 | Davidite-(Ce) | (Ce,La)(Y,U)(Ti,Fe+++)20O38 |
3.384(26.31) | 80 | 4.960(17.87) | 60 | 6.420(13.78) | 40 | Manganbelyankinite | (Mn,Ca)(Ti,Nb)5O12·9(H2O) |
3.388(26.28) | 200 | 6.516(13.58) | 160 | 5.970(14.83) | 140 | Yttrobetafite-(Y) | (Y,U,Ce)2(Ti,Nb,Ta)2O6(OH) |
3.390(26.27) | 200 | 6.500(13.61) | 160 | 5.620(15.76) | 140 | Laurite | RuS2 |
3.407(26.13) | 200 | 5.158(17.18) | 180 | 5.414(16.36) | 176 | Tistarite | Ti2O3 |
3.414(26.08) | 200 | 6.560(13.49) | 200 | 5.040(17.58) | 180 | Struverite | (Ti,Ta,Fe+++)O2 |
3.420(26.03) | 200 | 7.458(11.86) | 180 | 5.418(16.35) | 140 | Natanite | Fe++Sn++++(OH)6 |
3.426(25.99) | 200 | 4.020(22.09) | 200 | 5.380(16.46) | 180 | Maucherite | Ni11As8 |
3.426(25.99) | 200 | 4.488(19.77) | 176 | 5.496(16.11) | 130 | IMA2008-060 | Mg2(BO3)(OH) |
3.440(25.88) | 200 | 4.912(18.04) | 200 | 8.460(10.45) | 200 | Hisingerite | Fe+++2Si2O5(OH)4·2(H2O) |
3.440(25.88) | 200 | 6.520(13.57) | 180 | 5.100(17.37) | 160 | Ordonezite | ZnSb2O6 |
3.440(25.88) | 200 | 4.180(21.24) | 180 | 5.840(15.16) | 100 | Gagarinite-(Y) | NaCaY(F,Cl)6 |
3.480(25.58) | 200 | 5.120(17.31) | 160 | 6.660(13.28) | 160 | Tapiolite | (Fe,Mn)(Ta,Nb)2O6 |
3.480(25.58) | 200 | 5.120(17.31) | 160 | 6.660(13.28) | 160 | Tapiolite-(Fe) | (Fe++,Mn++)(Ta,Nb)2O6 |
3.480(25.58) | 200 | 5.740(15.42) | 200 | 6.640(13.32) | 200 | Irarsite | (Ir,Ru,Rh,Pt)AsS |
3.480(25.58) | 200 | 7.400(11.95) | 140 | 10.040(8.80) | 140 | Clinohumite | (Mg,Fe++)9(SiO4)4(F,OH)2 |
3.480(25.58) | 200 | 5.740(15.42) | 200 | 6.620(13.36) | 200 | Hollingworthite | (Rh,Pt,Pd)AsS |
[ 1 ]